2019年中考数学求不规则四边形面积的两种方法
对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。常用的基本方法有:
1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。
例1:求下图阴影部分的面积(单位:厘米)。
解答:
通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:(平方厘米)
2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。
例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少?
解答:
两个正方形的面积:5&tis;5+4&tis;4=41(平方厘米)
三个空白三角形的面积和:(5+4)&tis;5÷2+4&tis;4÷2+5&tis;(5-4)÷2=33(平方厘米)
阴影部分的面积:41-33=8(平方厘米)
除了以上这两种方法,还有其他的几种方法,同学们不妨了解了解。
3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?
解答:
阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。
平行四边形ABCD的面积:8&tis;6÷2+8=32(平方厘米)
4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?
解答:
结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD比三角形CDA的面积大2平方厘米。
(4&tis;4÷2-2)&tis;2÷4=3(厘米)