2019年中考初三数学二次函数教学方法日志分析
二次函数的应用学习涉及涉及考查综合知识点很多, 网小编给同学们了2019 二次函数教学方法日志分析,帮助大家进一步学习理解。
2019初三数学二次函数教学方法日志分析
二次函数是 必考的重点章节,里面主要涉及了五大学习目标1会求函数解析式;2会作函数图像;3会说图像性质;4会平移图像;5会把一般式配方成顶点式,更涉及了许多思想方法。为了能更好的帮助学生学好二次函数,从以下几方面探讨如何学好二次函数。
一、理解二次函数的内涵及本质
二次函数y=ax2+bx+c(a=?0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图像就是由无数个这样的点构成的图形.特别地,若图像上某一点的横坐标为m(字母),那纵坐标可表示成am?2+bm+c。
二、熟悉几个特殊型二次函数的图像及性质
1.通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图像的形状及位置,熟悉各自图像的基本特征.反之,根据图像的特征能迅速判定它是哪一种解析式.
2.理解图像的平移口诀“括号内加减左右移,括号外加减上下移”.y=ax2→y=a(x+h)2+k“括号外加减上下移”是针对k而言的,“括号内加减左右移”是针对h而言的。
3.通过描点画图、图像平移,理解并明确解析式的特征与图像的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中构画出它的图像的基本特征,这才真正意义上做到数形结合。
4.在熟悉函数图像的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图像来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等。在遇到比较复杂的代数式的符号判断时,可采用特殊值法处理。
三、要充分利用抛物线“顶点”的作用
1.要能准确灵活地求出“顶点”.形如y=a(x+h)2+k→顶点(-h,k),对于其他形式的二次函数,我们可化为顶点式而求出顶点。
2.理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果。不过这里求函数最值时,有时要考虑自变量的取值范围。
3.利用顶点画草图.在大多数情况下,我们可以根据抛物线顶点,结合开口方向,画出抛物线的大致图像(即草图),能帮助我们分析、解决问题就行了。
四、理解掌握抛物线与坐标轴交点的求法
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点。
从以上求交点的过程可以看出,求交点的实质就是解方程.联系方程的根的判别式,利用根的判别式的值来判定抛物线与x轴的交点个数。
五、灵活应用待定系数法求二次函数的解析式
用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如已知三个一般条件,可将函数关系式设为一般式;如已知顶点的任何一个坐标,可将函数关系式设为顶点式;如已知两交点坐标,可将函数关系式设为交点式;如顶点在坐标轴或原点时,可将函数关系式设为特殊式等。
,同学们要尝试多种方法做题,吃透函数图像与性质,善于发现其中规律,从做题中领悟技巧。
以上是2018 二次函数教学方法日志分析内容,希望对大家学习二次函数有帮助,更多内容请关注 网。