> 中考 >

2019中考数学知识点解读:数与式

中考 2023-02-04 10:23中考时间www.ettschool.cn

2019中考数学考试马上到来,学生们该如何中考数学 中的几何知识呢?下面 小编为学生们辅导中考数学知识点数与式,一起来看看详细内容吧!

一、 的分类

★判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念

1、相反数(符号不同)的两个数叫做互为相反数(a和b互为相反数a+b=0)

2、倒数(1)实数a(a=?0)的倒数是;(2)a和b 互为倒数;(3)0没有倒数

3、绝对值

(2)实数的绝对值----非 ,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)化简必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根

(1)平方根,算术平方根设a≥0,称叫a的平方根,叫a的算术平方根。

正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(2)立方根叫实数a的立方根。

一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴

1、数轴规定了原点、正方向、单位 的直线称为数轴---数轴的三要素。

2、实数和数轴上的点是一一对应的关系。

四、实数大小的比较

1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、 的运算

1、加法

(1)同号两数相加,取原来的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。

2、减法—减去一个数等于加上这个数的相反数。

3、乘法

(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法

(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方乘方与开方互为逆运算。

6、实数的运算顺序乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法

1、科学记数法设N>0,则N= a&tis;(其中1≤a<10,n为整数)。

2、有效数字一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种(1)精确到那一位;(2)保留几个有效数字。

基础

一、代数式

1、代数式用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。

2、 用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、

二、整式的有关概念及运算

1、概念

(1)单项式数与字母的积叫做单项式。单独一个数或字母也是单项式。

次数一个单项式中,所有字母的 叫做这个单项式的次数。

系数单项式中的数字因数叫单项式的系数。

(2)多项式几个单项式的和叫做多项式。

项多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。

次数次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。

升(降)幂排列把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算

(1)整式的加减

合并同类项把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

☆整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除

幂的运算法则其中m、n都是正整数

同底数幂相乘;同底数幂相除;幂的乘方

积的乘方。

单项式乘以单项式用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式

平方差公式;

完全平方公式

三、因式分解

1、因式分解概念把一个多项式化成几个 的积的形式,叫因式分解。

2、常用的因式分解方法

(1)提取公因式法

(2)运用公式法

(3)十字相乘法

(4)分组分解法将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法若的两个根是、,则有

3、因式分解的一般步骤

(1)如果多项式的各项有公因式,那么先提公因式;

(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;

(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)考虑用分组分解法。

四、

1、分式定义形如的式子叫分式,其中A、B是整式,且B中含有字母。

(1)分式无意义B=0时,分式无意义; B=?0时,分式有意义。

(2)分式的值为0A=0,B=?0时,分式的值等于0。

(3)分式的约分—把一个分式的分子与分母的公因式约去

方法—把分子、分母因式分解,再约去公因式。

(4)最简分式-----一个分式的分子与分母没有公因式,一定要化为最简分式。

(5)通分—把几个异分母的分式分别化成与原来分式相等的同分母分式的过程

(6)最简公分母各分式的分母所有因式的最高次幂的积。

(7)有理式整式和分式统称有理式。

2、分式的基本性质

(1);(2)

(3)分式的变号法则分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算

(1)加、减同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除除以一个分式等于乘上它的倒数式。

(4)乘方分式的乘方就是把分子、分母分别乘方。

五、二次根式

1、二次根式的概念式子叫做二次根式。

(1)最简二次根式被开方数的因数是整数,因式是 ,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化把分母中的根号化去叫做分母有理化。

(4)有理化因式把两个含有二次根式的 相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有与;与)

2、二次根式的性质

(1) ;(2);

(3)(a≥0,b≥0);(4)

3、运算

(1)二次根式的加减将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法(a≥0,b≥0)。

(3)二次根式的除法

二次根式运算的最终结果如果是根式,要化成最简二次根式。

二、式的运算

1、巧用公式----灵活运用,掌握公式的变形,逆用,掌握运用公式的技巧,使运算简便准确。

2、化简求值------一定要先化到最简再代入求值,注意去括号的法则。

3、 的计算(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号

4、根式计算----二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。

以上就是2019年中考数学 复习的内容,更多精彩内容,尽请关注 中考频道!

Copyright@2015-2025 学习方法网版板所有